Normal model

Description

Linear regression with normally distributed residuals.

Definition

For continuous unbounded outcome \(y\) and predictors \(x\), the model is:

\[ \begin{align} y_i \sim \text{normal}(\eta_i, \sigma) \\ \eta_i = \alpha + \beta \cdot x_i \end{align} \]

Parameters needing priors

  • \(\alpha\) (intercept)
  • \(\beta\) (predictor weights)
  • \(\sigma\) (residual standard deviation)

Prior for \(\alpha\)

Weakly informative data-adaptive prior

Gelman, Hill, and Vehtari (2020) Chapter 9

Centered intercept (expected value of \(y\) when predictors are set to mean values of observed data)

\[ \begin{align} \alpha_{\text{centered}} \sim \text{normal}(\text{mean}(y), 2.5 \text{SD}(y)) \\ \end{align} \]

Prior for \(\beta\)

Weakly informative data-adaptive normal prior

Gelman, Hill, and Vehtari (2020) Chapter 9 describes a data-adaptive normal prior

\[ \begin{align} \beta_k \sim \text{normal}(0, 2.5 \text{SD}(y)/\text{SD}(x_k)). \end{align} \]

Prior for \(\sigma\)

Weakly informative data-adaptive exponential prior

Gelman, Hill, and Vehtari (2020) Chapter 9 describes a data-adaptive exponential prior

\[ \sigma \sim \text{exponential}(1/\text{SD}(y)) \]

See also

References

Gelman, Andrew, Jennifer Hill, and Aki Vehtari. 2020. Regression and Other Stories. S.l.: Cambridge University Press.