ARR2
Description
Developed by (Kohns et al. 2024), it is similar to the R2-D2 prior (Zhang et al. 2022) but for autoregression.
Definition
\[ \begin{align*} \phi_i &\sim \text{normal}\left(0, \frac{\sigma^2}{\sigma_{y}^2}\tau^2\psi_i\right) \\ \tau^2 &= \frac{R^2}{1 - R^2} \\ R^2 &\sim \text{beta}(\mu_R,\sigma_R) \\ \psi &\sim \text{Dirichlet}(\xi_1,\dotsc,\xi_p) \\ \sigma^2 &\sim p(\sigma^2) \\ \end{align*} \]
Things to specify
- Prior on \(\sigma^2\)
- \(\xi_1 \dotsc \xi_p\) (concentration parameters corresponding to lag coefficients)
- \(\mu_R\) and \(\sigma_R\) (location and precision of \(R^2\) prior
Stan code
data {
int<lower=1> T; // number of time points
vector[T] Y; // observations
int<lower=0> p; // AR order
// concentration vector of the Dirichlet prior
vector<lower=0>[p] cons;
// data for the R2D2 prior
real<lower=0> mean_R2; // mean of the R2 prior
real<lower=0> prec_R2; // precision of the R2 prior
real<lower=0> sigma_sd; // sd of sigma prior
// variance estimates of y
real<lower=0> var_y;
}
parameters {
vector[p] phi; // AR coefficients
simplex[p] psi; // decomposition simplex
real<lower=0, upper=1> R2; // coefficient of determination
real<lower=0> sigma; // observation model sd
}
transformed parameters {
real<lower=0> tau2 = R2 / (1 - R2); // Equation 18
vector[T] mu = rep_vector(0.0, T);
for (t in (p+1):T) {
for (i in 1:p) {
// Equation 16
mu[t] += phi[i] * Y[t-i];
}
}
}
model {
// priors
0, sqrt(sigma^2/var_y * tau2 * psi)); // Equation 17
phi ~ normal(1 - mean_R2) * prec_R2); // Equation 19
R2 ~ beta(mean_R2 * prec_R2, (0, sigma_sd); // Equation 20
sigma ~ normal(// Equation 21
psi ~ dirichlet(cons); // likelihood
// Equation 15
Y ~ normal_lpdf(mu, sigma); }
References
Kohns, David, Noa Kallioinen, Yann McLatchie, and Aki Vehtari. 2024. “The ARR2 Prior: Flexible Predictive Prior Definition for Bayesian Auto-Regressions.” May 31, 2024. http://arxiv.org/abs/2405.19920.
Zhang, Yan Dora, Brian P. Naughton, Howard D. Bondell, and Brian J. Reich. 2022. “Bayesian Regression Using a Prior on the Model Fit: The R2-D2 Shrinkage Prior.” Journal of the American Statistical Association 117 (538): 862–74. https://doi.org/10.1080/01621459.2020.1825449.