Autoregression overview
Model:
\[ y_t \sim \text{normal}(\mu_t, \sigma) \]
\[ \mu_t = \phi \cdot y_{t-p, \dots, t-1} \]
Parameters needing priors:
- \(\phi\) (lag weights)
- \(\sigma\) (observation model standard deviation)
Data:
- \(y\) (continuous outcome)
- \(X\) (predictors)