Calculate the analytical derivative of a quantity with respect to power-scaling prior or likelihood.
Examples
example_model <- example_powerscale_model()
draws <- example_model$draws
log_prior <- log_prior_draws(draws, joint = TRUE)
posterior::summarise_draws(
    posterior::subset_draws(draws, variable = c("mu", "sigma")),
    mean,
    mean_sens = ~powerscale_derivative(.x, log_prior, quantity = "mean")
)
#> # A tibble: 2 × 3
#>   variable  mean psens_mean
#>   <chr>    <dbl>      <dbl>
#> 1 mu       9.53      -0.313
#> 2 sigma    0.884      0.145
