Prior/likelihood power-scaling perturbation
powerscale-overview.Rd
Estimate posterior draws based on power-scaling perturbations of prior or likelihood using importance sampling (and optionally moment matching).
Usage
powerscale(x, ...)
# Default S3 method
powerscale(
x,
component,
alpha,
moment_match = FALSE,
k_threshold = NULL,
resample = FALSE,
transform = NULL,
prediction = NULL,
variable = NULL,
selection = NULL,
...
)
# S3 method for class 'priorsense_data'
powerscale(
x,
component,
alpha,
moment_match = FALSE,
k_threshold = NULL,
resample = FALSE,
transform = NULL,
prediction = NULL,
variable = NULL,
selection = NULL,
...
)
powerscale_sequence(x, ...)
# Default S3 method
powerscale_sequence(
x,
lower_alpha = 0.8,
upper_alpha = 1/lower_alpha,
length = 3,
variable = NULL,
component = c("prior", "likelihood"),
moment_match = FALSE,
k_threshold = 0.5,
resample = FALSE,
transform = NULL,
prediction = NULL,
auto_alpha_range = FALSE,
symmetric = TRUE,
prior_selection = NULL,
likelihood_selection = NULL,
...
)
# S3 method for class 'priorsense_data'
powerscale_sequence(
x,
lower_alpha = 0.8,
upper_alpha = 1/lower_alpha,
length = 3,
variable = NULL,
component = c("prior", "likelihood"),
moment_match = FALSE,
k_threshold = 0.5,
resample = FALSE,
transform = NULL,
prediction = NULL,
auto_alpha_range = FALSE,
symmetric = TRUE,
prior_selection = NULL,
likelihood_selection = NULL,
...
)
Arguments
- x
A fitted model object.
- ...
Further arguments passed to internal functions.
- component
Component to be power-scaled (either "prior" or "likelihood"). For powerscale_sequence, this can be both "prior" and "likelihood".
- alpha
Value by which to power-scale specified component. (likelihood/prior).
- moment_match
Logical; Indicate whether or not moment matching should be performed. Can only be TRUE if
is_method
is "psis".- k_threshold
Threshold value for Pareto k values above which the moment matching algorithm is used. Default is 0.5.
- resample
Logical; Indicate whether or not draws should be resampled based on calculated importance weights.
- transform
Indicate a transformation of posterior draws to perform before sensitivity analysis. Either "scale" or "whiten".
- prediction
Function taking the model fit and returning a draws_df of predictions to be appended to the posterior draws
- variable
Vector of variable names to return estimated posterior draws for. If
NULL
all variables will be included.- selection
Numeric vector specifying partitions of component to be included in power-scaling. Default is NULL, which takes all partitions.
- lower_alpha
Lower power-scaling alpha value in sequence.
- upper_alpha
Upper power-scaling alpha value in sequence.
- length
Length of alpha sequence.
- auto_alpha_range
Boolean. Restrict range to ensure Pareto-k values below threshold?
- symmetric
Boolean. Should the alpha range be symmetrical around alpha = 1, on log-space?
- prior_selection
Numeric vector of prior partitions to include in power-scaling. Default is NULL, which takes all partitions.
- likelihood_selection
Numeric vector of likelihood partitions to include in power-scaling. Default is NULL, which takes all partitions.
Value
A powerscaled_draws
or powerscaled_sequence
object,
which contains the estimated posterior draws resulting from the
power-scaling perturbations and details of the perturbation and
estimation methods.
References
Kallioinen, N., Paananen, T., Bürkner, P-C., Vehtari, A. (2023).
Detecting and diagnosing prior and likelihood sensitivity with
power-scaling perturbations. Statistics and
Computing. 34(57). doi:10.1007/s11222-023-10366-5
Vehtari, A., Simpson, D., Gelman, A., Yao, Y., and Gabry,
J. (2024). Pareto smoothed importance sampling. Journal of
Machine Learning Research. 25(72).
https://jmlr.org/papers/v25/19-556.html
Paananen, T., Piironen, J., Bürkner, P-C., Vehtari, A. (2021).
Implicitly adaptive importance sampling. Statistics and
Computing. 31(16). doi:10.1007/s11222-020-09982-2
Examples
ex <- example_powerscale_model()
powerscale(ex$draws, component = "prior", alpha = 0.5)
#> # A draws_df: 1000 iterations, 4 chains, and 2 variables
#> mu sigma
#> 1 9.4 1.05
#> 2 9.5 1.06
#> 3 9.3 0.90
#> 4 9.4 1.06
#> 5 9.1 1.18
#> 6 9.2 1.06
#> 7 9.5 1.04
#> 8 9.7 0.60
#> 9 9.7 0.65
#> 10 9.5 0.77
#> # ... with 3990 more draws
#> # ... hidden reserved variables {'.log_weight', '.chain', '.iteration', '.draw'}
#>
#> power-scaling
#> alpha: 0.5
#> scaled component: prior
#> pareto-k: 0.2
#> pareto-k threshold: 0.72
#> resampled: FALSE
#> transform: identity
powerscale_sequence(ex$draws)
#> base draws:
#> # A draws_df: 1000 iterations, 4 chains, and 2 variables
#> mu sigma
#> 1 9.4 1.05
#> 2 9.5 1.06
#> 3 9.3 0.90
#> 4 9.4 1.06
#> 5 9.1 1.18
#> 6 9.2 1.06
#> 7 9.5 1.04
#> 8 9.7 0.60
#> 9 9.7 0.65
#> 10 9.5 0.77
#> # ... with 3990 more draws
#> # ... hidden reserved variables {'.chain', '.iteration', '.draw'}
#>
#> power-scaling
#> alpha range: [0.8, 1.25]
#> length of sequence: 2
#> scaled component: likelihood
#> scaled component: prior
#> transform: identity