Cumulative Jensen-Shannon divergence
cjs_dist.Rd
Computes the cumulative Jensen-Shannon distance between two samples.
Arguments
- x
numeric vector of samples from first distribution
- y
numeric vector of samples from second distribution
- x_weights
numeric vector of weights of first distribution
- y_weights
numeric vector of weights of second distribution
- metric
Logical; if TRUE, return square-root of CJS
- unsigned
Logical; if TRUE then return max of CJS(P(x) || Q(x)) and CJS(P(-x) || Q(-x)). This ensures invariance to transformations such as PCA.
- ...
unused
Details
The Cumulative Jensen-Shannon distance is a symmetric metric based on the cumulative Jensen-Shannon divergence. The divergence CJS(P || Q) between two cumulative distribution functions P and Q is defined as:
$$CJS(P || Q) = \sum P(x) \log \frac{P(x)}{0.5 (P(x) + Q(x))} + \frac{1}{2 \ln 2} \sum (Q(x) - P(x))$$
The symmetric metric is defined as:
$$CJS_{dist}(P || Q) = \sqrt{CJS(P || Q) + CJS(Q || P)}$$
This has an upper bound of \(\sqrt{ \sum (P(x) + Q(x))}\)
References
Nguyen H-V., Vreeken J. (2015). Non-parametric
Jensen-Shannon Divergence. In: Appice A., Rodrigues P., Santos
Costa V., Gama J., Jorge A., Soares C. (eds) Machine Learning
and Knowledge Discovery in Databases. ECML PKDD 2015. Lecture
Notes in Computer Science, vol 9285. Springer, Cham.
doi:10.1007/978-3-319-23525-7_11